top of page
Cohort Profile page - filter options actives.jpg

Cohort Atlas

Product Design + Data Viz


One of CareJourney’s main products is its Cohort Atlas dataset. Built off of Medicare Fee-For-Service claims, this data covers geographic data, metrics to understand patients’ overall health, prevalence of health conditions, and cost and utilization metrics. It is used by health systems to assess markets, uncover opportunities for savings, understand patient demographics, identify highest-need populations, and more. In the dataset, patients are grouped into "Cohorts" (ex. Alzheimers patients, Diabetes patients, etc.) to better understand and compare across different health conditions.

The Task

My team was asked to create a front-end solution for users to easily digest this data and integrate it into their workflows. I was tasked with creating the Summary Page where users could get a high level understanding, see the most important insights, and delve deeper into the data if they desired.

My Role

Product Designer


UX Designer

Product Manager


3 Months

The Result


CareJourney users can be broken out into the following three buckets:

Screen Shot 2022-11-27 at 2.56.09 PM.png
Screen Shot 2022-11-27 at 2.56.09 PM.png
Screen Shot 2022-11-27 at 2.56.55 PM.png
Screen Shot 2022-11-27 at 2.56.55 PM.png
Screen Shot 2022-11-27 at 2.57.10 PM.png
Screen Shot 2022-11-27 at 2.57.10 PM.png

Because we were focusing on data visualizations, we felt our main users of interest are the In and Out's as well as the Eager Beavers. We found these users will spend more time with visual aids to find their insights, whereas Beautiful Minds tend to run their own analysis and create their own visualizations using the raw data.

User Stories

We brainstormed our most important user stories for these personas and defined design requirements based on them.

As a user, I need an easy way to find a cohort and define a region so I can analyze characteristics about a patient population.

As a user, I need to see a breakdown of patient demographics so I can better understand specific segments of a population.

As a user, I need a short list of the most important insights about a cohort so I can quickly identify areas of opportunity.

As a user, I need to I need a way to compare several cohorts at once so I can see trends across many cohorts.

Sample User Stories

Design Requirements

Visually digest key insights quickly

See trends in data easily, with the ability to share learnings easily through screenshots. Find most important metrics immediately.

Delve deeper into data of interest

Explore data points of interest in further detail with quick access to tabular info.

Filter data easily

Provide different cuts of data users are interested in based on geography, patient cohorts, year, and more.

Benchmark the numbers

Understand performance relative to other health systems, geographies, and cohorts.

Most Important Data

With our users and their requirements in mind, we set out to understand what data matters to them the most and can best help them solve for their specific use cases. We interviewed several members of our user support team. They provided us with insights on which numbers bring value to which of our users and why. While our dataset has hundreds of data points, we were able to narrow our list of most important metrics to the following:

Summary of Metrics

  • Total # of patients

  • Total allowed amount ($)

  • Average HCC Score (to help assess patient risk)

Cost Metrics

  • Spend per month ($)

  • Site of service breakdown

Chronic Conditions

  • # of patients in the cohort with the chronic condition​

  • % of patients in the cohort with the chronic condition

Utilization Metrics

  • # of avoidable emergency visits

  • # of readmissions

  • # of unplanned admissions

User Flows

With an understanding of what data matters to our members and why, we created a high-level user flow to get a better idea of how users would navigate through the product to reach their data of interest. Getting this right was important because of the variety of our users' needs; some users only wanted summaries of the numbers while others would want to delve deeper. We went through several iterations of this before landing on a flow we liked that could solve for both types of use cases. 

Screen Shot 2022-11-27 at 4.33.25 PM.png

User Flow


Reviewing our user research, design requirements, and MVP metrics, we began brainstorming solutions. During this process, we thought hard on how to make the visualizations truly meaningful. We found that numbers standing alone from this dataset didn’t mean much; we needed to show comparisons so that a user could interpret their relative meaning.

Some questions we asked ourselves during this process of iteration include:

  1. How can we build visualizations that will be scalable and deliver meaning for the hundreds of cohorts we have?

  2. How can data points be shown through different visual channels (ex. color, size, etc.) to show relationships and paint a fuller picture?

  3. How many cuts of the data (and which ones) can we show before we start to lose the user's comprehension in the story?

CJ 5.jpg
CJ 3.jpg
CJ 4.jpg
CJ 2.jpg

My Early Sketches

High Fidelity Mocks

Frame 967 (1).png

Lessons Learned

While we are still gathering feedback on users' experiences with the tool today, here are some things we learned so far:

  1. Scope out scalability during the iteration process: Not all of our visualizations were as scalable as we thought - The donut chart under Chronic Conditions doesn't always convey something valuable, especially if the percentages are small (which they often are). If we had tested our designs with more examples of real data, we might have caught this sooner. 

  2. Prioritize user feedback: Instead of talking to users directly, we relied on team members who work closely with users to provide insights on what delivers value. While this was certainly useful in discovery, we were still left with some assumptions that needed to be validated in our final designs.

bottom of page